C=C bond cleavage on neutral VO3(V2O5)n clusters.

نویسندگان

  • Feng Dong
  • Scott Heinbuch
  • Yan Xie
  • Elliot R Bernstein
  • Jorge J Rocca
  • Zhe-Chen Wang
  • Xun-Lei Ding
  • Sheng-Gui He
چکیده

The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene.

Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable ...

متن کامل

A Facile and Environmental Friendly Method for C=N Bond Cleavage of Imines Using p-Toluenesulfonic Acid in Solid State

A simple, efficient and clean procedure has been developed for the cleavage of imines C=N bond. Deprotection of imines to their parent carbonyl and amine compounds was achieved using p-toluenesulfonic acid in the solid state condition at 25-45 ˚C. The salient features of this methodology are shorter reaction times, cheap processing, high yields of product and easy availability of the catalyst. ...

متن کامل

Partial oxidation of propylene catalyzed by VO3 clusters: a density functional theory study.

Density functional theory (DFT) calculations are carried out to investigate partial oxidation of propylene over neutral VO 3 clusters. C=C bond cleavage products CH 3CHO + VO 2CH 2 and HCHO + VO 2CHCH 3 can be formed overall barrierlessly from the reaction of propylene with VO 3 at room temperature. Formation of hydrogen transfer products H 2O + VO 2C 3H 4, CH 2=CHCHO + VO 2H 2, CH 3CH 2CHO + V...

متن کامل

H2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research

Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...

متن کامل

Transition-state enthalpy and entropy effects on reactivity and selectivity in hydrogenolysis of n-alkanes.

Statistical mechanics and transition state (TS) theory describe rates and selectivities of C-C bond cleavage in C2-C10 n-alkanes on metal catalysts and provide a general description for the hydrogenolysis of hydrocarbons. Mechanistic interpretation shows the dominant role of entropy, over enthalpy, in determining the location and rate of C-C bond cleavage. Ir, Rh, and Pt clusters cleave C-C bon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 2009